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R E V I E W : E N G I N E E R I N G

Advanced Technology Paths to Global Climate
Stability: Energy for a Greenhouse Planet

Martin I. Hoffert,1* Ken Caldeira,3 Gregory Benford,4 David R. Criswell,5 Christopher Green,6 Howard Herzog,7 Atul K. Jain,8

Haroon S. Kheshgi,9 Klaus S. Lackner,10 John S. Lewis,12 H. Douglas Lightfoot,13 Wallace Manheimer,14 John C. Mankins,15

Michael E. Mauel,11 L. John Perkins,3 Michael E. Schlesinger,8 Tyler Volk,2 Tom M. L. Wigley16

Stabilizing the carbon dioxide–induced component of climate change is an energy
problem. Establishment of a course toward such stabilization will require the devel-
opment within the coming decades of primary energy sources that do not emit carbon
dioxide to the atmosphere, in addition to efforts to reduce end-use energy demand.
Mid-century primary power requirements that are free of carbon dioxide emissions
could be several times what we now derive from fossil fuels (�1013 watts), even with
improvements in energy efficiency. Here we survey possible future energy sources,
evaluated for their capability to supply massive amounts of carbon emission–free
energy and for their potential for large-scale commercialization. Possible candidates
for primary energy sources include terrestrial solar and wind energy, solar power
satellites, biomass, nuclear fission, nuclear fusion, fission-fusion hybrids, and fossil
fuels from which carbon has been sequestered. Non–primary power technologies that
could contribute to climate stabilization include efficiency improvements, hydrogen
production, storage and transport, superconducting global electric grids, and geoengi-
neering. All of these approaches currently have severe deficiencies that limit their
ability to stabilize global climate. We conclude that a broad range of intensive
research and development is urgently needed to produce technological options that
can allow both climate stabilization and economic development.

More than a century ago, Arrhenius
put forth the idea that CO2 from fos-
sil fuel burning could raise the infra-

red opacity of the atmosphere enough to
warm Earth (1). In the 20th century, the
human population quadrupled and primary
power consumption increased 16-fold (2).
The fossil fuel greenhouse theory has become
more credible as observations accumulate
and as we better understand the links between

fossil fuel burning, climate change, and en-
vironmental impacts (3). Atmospheric CO2

has increased from �275 to �370 parts per
million (ppm). Unchecked, it will pass 550
ppm this century. Climate models and paleo-
climate data indicate that 550 ppm, if sus-
tained, could eventually produce global
warming comparable in magnitude but oppo-
site in sign to the global cooling of the last Ice
Age (4).

The United Nations Framework Conven-
tion on Climate Change aims to stabilize
greenhouse gas concentrations at levels that
avoid “dangerous anthropogenic interference
with the climate system (5).” Atmospheric
CO2 stabilization targets as low as 450 ppm
could be needed to forestall coral reef bleach-
ing, thermohaline circulation shutdown, and
sea level rise from disintegration of the West
Antarctic Ice Sheet (6). Wigley and col-
leagues developed emission scenarios to sta-
bilize atmospheric CO2 at 350, 450, 550, 650,
or 750 ppm (7). They minimized early emis-
sion controls by initially following a busi-
ness-as-usual scenario that combines eco-
nomic growth of 2 to 3% year�1 with a
sustained decline of 1% year�1 in energy
intensity (energy use per gross domestic
product). Much larger cuts than those called
for in the Kyoto Protocol are needed later,
because the levels at which CO2 stabilize
depend approximately on total emissions.
Targets of cutting to 450 ppm, and certain-
ly 350 ppm, could require Herculean

effort. Even holding at 550 ppm is a major
challenge.

Primary power consumption today is �12
TW, of which 85% is fossil-fueled. Stabiliza-
tion at 550, 450, and 350 ppm CO2 by Wigley
et al. scenarios require emission-free power
by mid-century of 15, 25, and �30 TW,
respectively (8). Attaining this goal is not
easy. CO2 is a combustion product vital to
how civilization is powered; it cannot be
regulated away. CO2 stabilization could pre-
vent developing nations from basing their
energy supply on fossil fuels (9). Hansen et
al. call for reductions in methane and black
soot, which also cause warming (10). Such
reductions are desirable but do not address
fossil fuel greenhouse warming. The Kyoto
Protocol calls for greenhouse gas emission
reductions by developed nations that are 5%
below 1990 levels by 2008 to 2012. Paradox-
ically, Kyoto is too weak and too strong: Too
strong because its initial cuts are perceived as
an economic burden by some (the United
States withdrew for this stated reason); too
weak because much greater emission reduc-
tions will be needed, and we lack the tech-
nology to make them.

Arguably, the most effective way to re-
duce CO2 emissions with economic growth
and equity is to develop revolutionary chang-
es in the technology of energy production,
distribution, storage, and conversion (8). The
need to intensify research on such technolo-
gies now is by no means universally appre-
ciated. Present U.S. policy emphasizes do-
mestic oil production, not energy technology
research (11). Misperceptions of technologi-
cal readiness also appear in the latest “Sum-
mary for Policymakers” by the “Mitigation”
Working Group of the Intergovernmental
Panel on Climate Change (IPCC): “. . .
known technological options could achieve a
broad range of atmospheric CO2 stabilization
levels, such as 550 ppm, 450 ppm or below
over the next 100 years or more. . . . Known
technological options refer to technologies
that exist in operation or pilot plant stage
today. It does not include any new technolo-
gies that will require drastic technological
breakthroughs. . . .” (12)

This statement does not recognize the
CO2 emission–free power requirements im-
plied by the IPCC’s own reports (3, 8) and is
not supported by our assessment. Energy
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sources that can produce 100 to 300% of
present world power consumption without
greenhouse emissions do not exist operation-
ally or as pilot plants.

Can we produce enough emission-free
power in time? Here we assess the potential
of a broad range of technologies aimed at
meeting this goal.

Improving Efficiency
Efficiency is the ratio of usable energy output
to energy input. Primary energy in metastable
chemical and nuclear bonds includes fossil
fuels, fission fuels, and fusion fuels. “Renew-
ables” are primary energy in natural fluxes
(solar photons, wind, water, and heat flows).
Energy conversion always involves dissipa-
tive losses, losses that in many cases engi-
neers have already expended considerable ef-

fort to reduce. Opportunities still exist to
improve efficiency in power generation and
end-use sectors: transportation, manufactur-
ing, electricity, and (indoor) climate condi-
tioning (13).

The efficiencies of mature technologies
are well characterized (14, 15). Most efficient
are large electric generators (98 to 99% effi-
cient) and motors (90 to 97%). These are
followed by rotating heat engines that are
limited by the second law of thermodynam-
ics: gas and steam turbines (35 to 50%) and
diesel (30 to 35%) and internal combustion
(15 to 25%) engines. Electrolyte and elec-
trode materials and catalysts limit electro-
chemical fuel cells (50 to 55% now; 70%
eventually). Fuel cells may replace heat en-
gines but will likely run on hydrogen. A
seamless transition would use H2 extracted

from gasoline or methanol in reformers (75 to
80%). Renewable energy converters include
photovoltaic (PV) cells (commercial arrays,
about 15 to 20%; theoretical peak for single
bandgap crystalline cells, �24%; higher for
multiband cells, lower for more cost-effective
amorphous thin films) and wind turbines
(commercial units, about 30 to 40%; theoret-
ical “Betz limit,” �59%). High-pressure so-
dium vapor (15 to 20%), fluorescent (10 to
12%), and incandescent (2 to 5%) illumina-
tion generate more heat than light. Photosyn-
thesis has a very low sunlight-to-chemical
energy efficiency, limited by chlorophyll ab-
sorption bands (most productive ecosystems
are about 1 to 2% efficient; theoretical peak
independent of cell or ecosystem is �8%).

How much can energy efficiency im-
prove? In a given technology class, efficiency
normally starts low, grows for decades to
centuries, and levels off at some fraction of
its theoretical peak (16). It took 300 years to
develop fuel cells from 1%-efficient steam
engines. The earliest gas turbines could bare-
ly turn their compressors. The development
of fusion could be similar: The best experi-
ments are close to balancing power to ignite
the plasma; power is carried off by fusion-
generated neutrons, but no net power output
has occurred yet. Fossil and nuclear fuels are
much closer to their limits (Figs. 1A and 4A).
Steam-cycle efficiencies (39 to 50%, includ-
ing combined cycles and cogeneration) and
overall primary energy–to-electricity effi-
ciency (30 to 36%, including transmission
losses) yield the nominal thermal-to-electric
power conversion: 3 kW (thermal) � 1 kWe

(electrical). Impressive reductions in waste
heat have been accomplished with compact
fluorescents, low emissivity windows, and
cogeneration (17). More efficient automotive
power conversion is possible (18, 19). Emis-
sions depend on vehicle mass, driving
patterns, and aerodynamic drag, as well as
well-to-wheels efficiency [(torque � angular
velocity at wheels)/(fossil fuel power in)].
Power trains are typically 18 to 23% efficient
for internal combustion (IC), 21 to 27% for
battery-electric (35 to 40%, central power
plant; 80 to 85%, charge-discharge cycles; 80
to 85%, motor), 30 to 35% for IC-electric
hybrid (higher efficiency from electric power
recovery of otherwise lost mechanical ener-
gy), and 30 to 37% for fuel cell–electric (75
to 80%, reformer; 50 to 55%, fuel cell; 80 to
85%, motor).

Lifestyles also affect emissions. Ultra fu-
el-efficient cars are available today that can
travel up to 29 km liter�1 [68 miles per
gallon (mpg) U.S. Environmental Protection
Agency highway driving cycle (EPA hwy)].
But consumer demand for sport utility vehi-
cles (SUVs) has driven the fuel economy of
the U.S. car and light truck fleet to a 21-year
low of 8.5 km liter�1 (20 mpg EPA hwy)
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Fig. 1. (A) Fossil fuel electricity from steam turbine cycles. (B) Collecting CO2 from central plants
and air capture, followed by subterranean, ocean, and/or solid carbonate sequestration, could foster
emission-free electricity and hydrogen production, but huge processing and sequestration rates are
needed (5 to 10 GtC year�1 to produce 10 TW emission-free assuming energy penalties of 10 to
25%).
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(19). Even with SUVs, doubling (or more)
efficiency is quite feasible. Unfortunately, the
effects of such efficiency could be over-
whelmed if China and India follow the U.S.
path from bicycles and mass transit to cars.
(Asia already accounts for �80% of petro-
leum consumption growth.) As a result, car-
bon-neutral fuels or CO2 “air capture” may
be the best alternatives to develop.

Decarbonization and Sequestration
Reducing the amount of carbon emitted per unit
of primary energy is called decarbonization.
The long-term trend has been from coal to oil to
gas, with each fuel emitting progressively less
CO2 per joule of heat (20). Continuation of the
trend would lead to use of H2, a carbon-neutral
fuel, but H2 does not exist in geological reser-
voirs. Processes requiring energy are needed for
its synthesis. The energy can come from fossil
fuel feedstocks. H2 is produced today by steam-
reforming natural gas (2H2O � CH43 4H2 �
CO2). Energy can be transferred to H2 with an
efficiency of about 72% from gas, 76% from
oil, and 55 to 60% from coal (21). Per unit of
heat generated, more CO2 is produced by mak-
ing H2 from fossil fuel than by burning the
fossil fuel directly. Emission-free H2 manufac-
tured by water electrolysis that is powered by
renewable or nuclear sources is not yet cost
effective.

Thus, the decarbonization of fuels alone
will not mitigate global warming. The under-
lying problem is providing 10 to 30 TW
emission-free in 50 years. Continuing the
trend to lower carbon fuels requires disposing
of excess carbon because the trend opposes
the relative abundance of fossil resources—
high-carbon coal being most abundant, fol-
lowed by oil and gas (22, 23). One vision of
“clean” coal incorporates CO2 capture and
sequestration: Coal and/or biomass and waste
materials are gasified in an oxygen-blown
gasifier, and the product is cleaned of sulfur
and reacted with steam to form H2 and CO2.
After heat extraction, the CO2 is sequestered
and the H2 used for transportation or electric-
ity generation (24). Decarbonization is thus
intimately linked to sequestration (25). Se-
questration reservoirs include oceans, trees,
soils, depleted natural gas and oil fields, deep
saline aquifers, coal seams, and solid mineral
carbonates (Fig. 1B). The main advantage of
sequestration is its compatibility with exist-
ing fossil fuel infrastructures, including CO2

injections for enhanced recovery from exist-
ing oil and gas fields and capture of CO2

from power plant flue gases.
Recovery of fossil fuel CO2 emitted from

decentralized sources (like cars) may be
needed. The simplest air capture is foresta-
tion. Tree and soil sequestration does not
require combustion product separation or
more fuel, but the capacity to absorb CO2 is
limited. Uptake occurs during growth of or-

ganic matter (CH2O), when the net photosyn-
thesis-respiration reaction is to the right: h�
� CO2 � H2O 3 CH2O � O2. Historical
CO2 data and models imply a temperate for-
est carbon sink today of 1 to 3 billion tons of
carbon (GtC) year�1 (3), but some models
show forests reversing from sinks to sources
later this century as global warming increases
soil respiration (26). The exchange time of
CO2 with trees is �7 years. Turnover of iron
fertilization–enhanced plankton uptake (27)
can be similarly fast if organic detritus oxi-
dizes near the surface. Biological sequestra-
tion approaches to longer term storage in-
clude sealing undecayed trees underground
(28) and sinking agricultural residues to the
deep ocean (29). Air capture by aqueous cal-
cium hydroxide [Ca(OH)2] in shallow pools,
with CO2 recovery by heating CaCO3 in a
retort to produce CaO and CO2, has also been
proposed (30). This reaction (calcination) is a
key step in making cement from limestone,
but breaking the Ca–CO2 bond requires sub-
stantial energy.

Also being explored is longer term CO2

sequestration in the deep sea (31). For a given
emission scenario, ocean injections can sub-

stantially decrease peak atmospheric CO2

levels, although all cases eventually diffuse
some CO2 back to the atmosphere (32). Back-
diffusion and pH impacts of ocean CO2 dis-
posal could be diminished by accelerating
carbonate mineral weathering that would oth-
erwise slowly neutralize the oceanic acidity
produced by fossil fuel CO2 (33, 34). A
far-reaching removal scheme is reacting CO2

with the mineral serpentine to sequester car-
bon as a solid in magnesium carbonate
“bricks” by vastly accelerating silicate rock
weathering reactions, which remove atmo-
spheric CO2 over geologic time scales (35).
Thus, carbon sequestration could be a valu-
able bridge to renewable and/or nuclear
energy. However, if other emission-free pri-
mary power sources of 10 to 30 TW are
unavailable by mid-century, then enormous
sequestration rates could be needed to stabi-
lize atmospheric CO2 (Fig. 1B). Substantial
research investments are needed now to make
this technology available in time.

Renewables
Renewable energy technologies include bio-
mass, solar thermal and photovoltaic, wind,

N2 (liquid)
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electric power grid

electric
power

conditioning
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Fig. 2. (A) Mass-produced widely distributed PV arrays and wind turbines making electrolytic H2 or
electricity may eventually generate 10 to 30 TW emission-free. (B) The global grid proposed by R.
Buckminster Fuller with modern computerized load management and high-temperature supercon-
ducting (HTS) cables could transmit electricity from day to night locations and foster low-loss
distribution from remote, episodic, or dangerous power sources. (The resistivity of HTS wires
vanishes below the 77 K boiling point of nitrogen available from air.)
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hydropower, ocean thermal, geothermal, and
tidal (36). With the exception of firewood
and hydroelectricity (close to saturation),
these are collectively �1% of global power.
All renewables suffer from low areal power
densities. Biomass plantations can produce
carbon-neutral fuels for power plants or
transportation, but photosynthesis has too
low a power density (�0.6 W m�2) for bio-
fuels to contribute significantly to climate
stabilization (14, 37). (10 TW from biomass
requires �10% of Earth’s land surface, com-
parable to all of human agriculture.) PV and
wind energy (�15 We m�2) need less land,
but other materials can be limiting. For solar
energy, U.S. energy consumption may re-
quire a PV array covering a square �160 km

on each side (26,000 km2) (38). The electri-
cal equivalent of 10 TW (3.3 TWe) requires a
surface array �470 km on a side (220,000
km2). However, all the PV cells shipped from
1982 to 1998 would only cover �3 km2 (39).
A massive (but not insurmountable) scale-up
is required to get 10 to 30 TW equivalent.

More cost-effective PV panels and wind
turbines are expected as mass production drives
economies of scale. But renewables are inter-
mittent dispersed sources unsuited to baseload
without transmission, storage, and power con-
ditioning. Wind power is often available only
from remote or offshore locations. Meeting lo-
cal demand with PV arrays today requires
pumped-storage or battery-electric backup sys-
tems of comparable or greater capacity (40).

“Balance-of-system” infrastructures could
evolve from natural gas fuel cells if reformer H2

is replaced by H2 from PV or wind electrolysis
(Fig. 2A). Reversible electrolyzer and fuel cells
offer higher current (and power) per electrode
area than batteries, �20 kWe m�2 for proton
exchange membrane (PEM) cells (21). PEM
cells need platinum catalysts, � 5 � 10�3 kg Pt
m�2 (41) (a 10-TW hydrogen flow rate could
require 30 times as much as today’s annual
world platinum production). Advanced electri-
cal grids would also foster renewables. Even if
PV and wind turbine manufacturing rates in-
creased as required, existing grids could not
manage the loads. Present hub-and-spoke net-
works were designed for central power plants,
ones that are close to users. Such networks need
to be reengineered. Spanning the world electri-
cally evokes Buckminster Fuller’s global grid
(Fig. 2B). Even before the discovery of high-
temperature superconductivity (42), Fuller en-
visioned electricity wheeled between day and
night hemispheres and pole-to-pole (43).
Worldwide deregulation and the free trade of
electricity could have buyers and sellers estab-
lishing a supply-demand equilibrium to yield a
worldwide market price for grid-provided
electricity.

Space solar power (SSP) (Fig. 3, A and B)
exploits the unique attributes of space to
power Earth (44, 45). Solar flux is �8 times
higher in space than the long-term surface
average on spinning, cloudy Earth. If theoret-
ical microwave transmission efficiencies (50
to 60%) can be realized, 75 to 100 We could
be available at Earth’s surface per m2 of PV
array in space, �1/4 the area of surface PV
arrays of comparable power. In the 1970s, the
National Aeronautics and Space Administra-
tion (NASA) and the U.S. Department of
Energy (DOE) studied an SSP design with a
PV array the size of Manhattan in geostation-
ary orbit [(GEO) 35,800 km above the equa-
tor] that beamed power to a 10-km by 13-km
surface rectenna with 5 GWe output. [10 TW
equivalent (3.3 TWe) requires 660 SSP units.]
Other architectures, smaller satellites, and
newer technologies were explored in the
NASA “Fresh Look Study” (46). Alternative
locations are 200- to 10,000-km altitude sat-
ellite constellations (47), the Moon (48, 49),
and the Earth-Sun L2 Lagrange exterior point
[one of five libration points corotating with
the Earth-Sun system (Fig. 3C)] (50). Poten-
tially important for CO2 emission reduction is
a demonstration proposed by Japan’s Institute
of Space and Aeronautical Science to beam
solar energy to developing nations a few
degrees from the equator from a satellite in
low equatorial orbit (51). Papua New Guinea,
Indonesia, Ecuador, and Colombia on the
Pacific Rim, and Malaysia, Brazil, Tanzania,
and the Maldives have agreed to participate
in such experiments (52). A major challenge
is reducing or externalizing high launch
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Fig. 3. Capturing and controlling sun power in space. (A) The power relay satellite, solar power
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costs. With adequate research investments,
SSP could perhaps be demonstrated in 15 to
20 years and deliver electricity to global mar-
kets by the latter half of the century (53, 54).

Fission and Fusion
Nuclear electricity today is fueled by 235U.
Bombarding natural U with neutrons of a few
eV splits the nucleus, releasing a few hundred
million eV (235U � n 3 fission products �
2.43n � 202 MeV) (55). The 235U isotope,
0.72% of natural U, is often enriched to 2 to
3% to make reactor fuel rods. The existing
�500 nuclear power plants are variants of
235U thermal reactors (56, 57): the light water
reactor [(LWR) in both pressurized and boil-
ing versions]; heavy water (CANDU) reactor;
graphite-moderated, water-cooled (RBMK)
reactors, like Chernobyl; and gas-cooled
graphite reactors. LWRs (85% of today’s re-
actors) are based largely on Hyman Rick-
over’s water-cooled submarine reactor (58).
Loss-of-coolant accidents [Three Mile Island
(TMI) and Chernobyl] may be avoidable in
the future with “passively safe” reactors (Fig.
4A). Available reactor technology can pro-
vide CO2 emission–free electric power,
though it poses well-known problems of
waste disposal and weapons proliferation.

The main problem with fission for climate
stabilization is fuel. Sailor et al. (58) propose
a scenario with 235U reactors producing �10
TW by 2050. How long before such reactors
run out of fuel? Current estimates of U in
proven reserves and (ultimately recoverable)
resources are 3.4 and 17 million metric tons,
respectively (22) [Ores with 500 to 2000
parts per million by weight (ppmw) U are
considered recoverable (59)]. This represents
60 to 300 TW-year of primary energy (60).
At 10 TW, this would only last 6 to 30
years—hardly a basis for energy policy. Re-
coverable U may be underestimated. Still,
with 30- to 40-year reactor lifetimes, it would
be imprudent (at best) to initiate fission scale-
up without knowing whether there is enough
fuel. What about the seas? Japanese research-
ers have harvested dissolved U with organic
adsorbents from flowing seawater (61).
Oceans have 3.2 � 10�6 kg dissolved U m�3

(62)— a 235U energy density of 1.8 MJ m�3.
Multiplying by the oceans’ huge volume
(1.37 � 1018 m3) gives 4.4 billion metric tons
U and 80,000 TW-year in 235U. Runoff and
outflow to the sea from all the world’s rivers
is 1.2 � 106 m3 s�1 (63). Even with 100%
235U extraction, the flow rate needed to make
reactor fuel at the 10 TW rate is five times as
much as this outflow (64). Getting 10 TW
primary power from 235U in crustal ores or
seawater extraction may not be impossible,
but it would be a big stretch.

Despite enormous hurdles, the most
promising long-term nuclear power source is
still fusion (65). Steady progress has been

made toward “breakeven” with tokamak (a
toroidal near-vacuum chamber) magnetic
confinement [Q § (neutron or charged parti-
cle energy out)/(energy input to heat plas-
ma) 	 1] (Fig. 4B). The focus has been on
the deuterium-tritium (D-T) reaction (3
4He � n � 17.7 MeV). Breakeven requires
that the “plasma triple product” satisfy the
Lawson criteria: n � 
 � kT � 1 � 1021 m�3

s keV for the D-T reaction, where n is number
density; 
, confinement time; T, temperature;
and k, Boltzmann’s constant (66, 67). Best
results from Princeton (Tokamak Fusion Test
Reactor) and Europe ( Joint European Torus)
are within a factor of two (68). Higher Qs are
needed for power reactors: Neutrons pene-
trating the “first wall” would be absorbed by

molten lithium, and excess heat would be
transferred to turbogenerators. Tritium (12.3-
year half-life) would also be bred in the
lithium blanket (n � 6Li 3 4He � T � 4.8
MeV). D in the sea is virtually unlimited
whether utilized in the D-T reaction or the
harder-to-ignite D-D reactions (3 3He �
n � 3.2 MeV and 3 T � p � 4.0 MeV). If
D-T reactors were operational, lithium bred
to T could generate 16,000 TW-year (69),
twice the thermal energy in fossil fuels. The
D-3He reaction (3 4He � p � 18.3 MeV) is
of interest because it yields charged particles
directly convertible to electricity (70). Stud-
ies of D-3He and D-D burning in inertial
confinement fusion targets suggest that cen-
tral D-T ignitors can spark these reactions.

steam
generator

Fig. 4. (A) The conventional LWR employs water as both coolant and working fluid (left). The
helium-cooled, graphite-moderated, pebble-bed, modular nuclear fission reactor is theoretically
immune to loss-of-coolant meltdowns like TMI and Chernobyl (right). (B) The most successful path
to fusion has been confining a D-T plasma (in purple) with complex magnetic fields in a tokamak.
Breakeven occurs when the plasma triple product (number density � confinement time �
temperature) attains a critical value. Recent tokamak performance improvements were capped by
near-breakeven [data sources in (68)]. Experimental work on advanced fusion fuel cycles and
simpler magnetic confinement schemes like the levitated dipole experiment (LDX ) shown are
recommended.

S C I E N C E ’ S C O M P A S S

www.sciencemag.org SCIENCE VOL 298 1 NOVEMBER 2002 985

 o
n 

Ju
ne

 7
, 2

01
1

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fr

om
 

http://www.sciencemag.org/


Ignition of D-T–fueled inertial targets and
associated energy gains of Q � 10 may be
realized in the National Ignition Facility
within the next decade. Experiments are un-
der way to test dipole confinement by a su-
perconducting magnet levitated in a vacuum
chamber (71), a possible D-3He reactor pro-
totype. Rare on Earth, 3He may someday be
cost-effective to mine from the Moon (72). It
is even more abundant in gas-giant planetary
atmospheres (73). Seawater D and outer plan-
et 3He could power civilization longer than
any source other than the Sun.

How close, really, are we to using fusion?
Devices with a larger size or a larger mag-
netic field strength are required for net power
generation. Until recently, the fusion commu-
nity was promoting the International Thermo-
nuclear Experimental Reactor (ITER) to test
engineering feasibility. Enthusiasm for ITER
waned because of the uncertainty in raising
the nearly $10 billion needed for construc-
tion. The U.S. halted ITER sponsorship in
1998, but there is renewed interest among
U.S. fusion scientists to build a smaller-sized,
higher-field, nonsuperconducting experiment
or to rejoin participation in a half-sized, re-
designed ITER physics experiment. A “burn-
ing plasma experiment” could produce net
fusion power at an affordable scale and could
allow detailed observation of confined plas-
ma during self-heating by hot alpha particles.
The Fusion Energy Sciences Act of 2001
calls on DOE to “develop a plan for United
States construction of a magnetic fusion
burning plasma experiment for the purpose of
accelerating scientific understanding of fu-
sion plasmas (74).” This experiment is a
critical step to the realization of practical
fusion energy. Demonstrating net electric
power production from a self-sustaining fu-
sion reactor would be a breakthrough of over-
whelming importance but cannot be relied on
to aid CO2 stabilization by mid-century.

The conclusion from our 235U fuel analy-
sis is that breeder reactors are needed for
fission to significantly displace CO2 emis-
sions by 2050. Innovative breeder technolo-
gies include fusion-fission and accelerator-
fission hybrids. Fissionable 239Pu and/or
233U can be made from 238U and 232Th (75).
Commercial breeding is illegal today in the
United States because of concerns over waste
and proliferation (France, Germany, and Ja-
pan have also abandoned their breeding pro-
grams). Breeding could be more acceptable
with safer fuel cycles and transmutation of
high-level wastes to benign products (76). Th
is the more desirable feedstock: It is three
times more abundant than U and 233U is
harder to separate and divert to weapons than
plutonium. One idea to speed up breeding of
233U is to use tokamak-derived fusion-fission
hybrids (68, 77). D-T fusion yields a 3.4-
MeV alpha particle and a 14-MeV neutron.

The neutron would be used to breed 233U
from Th in the fusion blanket. Each fusion
neutron would breed about one 233U and one
T. Like 235U, 233U generates about 200 MeV
when it fissions. Fission is energy rich and
neutron poor, whereas fusion is energy poor
and neutron rich. A single fusion breeder
could support perhaps 10 satellite burners,
whereas a fission breeder supports perhaps
one. A related concept is the particle accel-
erator-fission hybrid breeder (56): Thirty
3-MeV neutrons result from each 1000-MeV
proton accelerated into molten lead; upon
injection to a subcritical reactor, these could
increase reactivity enough to breed 233U from
Th, provide electricity, and power the accel-
erator efficiently (�10% of the output). The
radiotoxicity of hybrid breeder reactors over
time is expected to be substantially below
LWRs.

These ideas appear important enough to
pursue experimentally, but both fission and
fusion are unlikely to play significant roles in
climate stabilization without aggressive re-
search and, in the case of fission, without the
resolution of outstanding issues of high-level
waste disposal and weapons proliferation.

Geoengineering
No discussion of global warming mitigation
is complete without mentioning “geoengi-
neering” (78, 79), also called climate engi-
neering or planetary engineering on Earth and
terraforming on other planets (80). Geoengi-
neering in the climate change context refers
mainly to altering the planetary radiation bal-
ance to affect climate and uses technologies
to compensate for the inadvertent global
warming produced by fossil fuel CO2 and
other greenhouse gases. An early idea was to
put layers of reflective sulfate aerosol in the
upper atmosphere to counteract greenhouse
warming (81). Variations on the sunblocking
theme include injecting sub-micrometer dust
to the stratosphere in shells fired by naval
guns, increasing cloud cover by seeding, and
shadowing Earth by objects in space (82).
Perhaps most ambitious is a proposed 2000-
km-diameter mirror of 10-�m glass fabricat-
ed from lunar materials at the L1 (83) La-
grange point of the Sun-Earth system (84)
(Fig. 3C). The mirror’s surface would look
like a permanent sunspot, would deflect 2%
of solar flux, and would roughly compensate
for the radiative forcing of a CO2 doubling.
Climate model runs indicate that the spatial
pattern of climate would resemble that with-
out fossil fuel CO2 (84). Engineering the
optical properties of aerosols injected to the
stratosphere to produce a variety of climatic
effects has also been proposed (85). Our as-
sessment reveals major challenges to stabiliz-
ing the fossil fuel greenhouse with energy
technology transformations. It is only prudent
to pursue geoengineering research as an in-

surance policy should global warming im-
pacts prove worse than anticipated and other
measures fail or prove too costly. Of course,
large-scale geophysical interventions are in-
herently risky and need to be approached
with caution.

Concluding Remarks
Even as evidence for global warming accu-
mulates, the dependence of civilization on the
oxidation of coal, oil, and gas for energy
makes an appropriate response difficult. The
disparity between what is needed and what
can be done without great compromise may
become more acute as the global economy
grows and as larger reductions in CO2-emit-
ting energy relative to growing total energy
demand are required. Energy is critical to
global prosperity and equity.

If Earth continues to warm, people may
turn to advanced technologies for solutions.
Combating global warming by radical re-
structuring of the global energy system could
be the technology challenge of the century.
We have identified a portfolio of promising
technologies here—some radical departures
from our present fossil fuel system. Many
concepts will fail, and staying the course will
require leadership. Stabilizing climate is not
easy. At the very least, it requires political
will, targeted research and development, and
international cooperation. Most of all, it re-
quires the recognition that, although regula-
tion can play a role, the fossil fuel greenhouse
effect is an energy problem that cannot be
simply regulated away.
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