Gulf Stream Temperature, Salinity, and Transport during the Last Millennium

David Lund - University of Michigan

- Part I Geostrophic estimation of Gulf Stream flow
 - Gulf Stream strength varied by ~10%
 - Weaker vertical shear and transport during Little Ice Age
 - Consistent with timing of North Atlantic cooling
- Part II Sea-surface temperature and salinity
 - Gulf Stream salinity increased during LIA
 Likely due to southward migration of the Inter-Tropical Convergence Zone
- Part III Linking the oceanic circulation and ITCZ

North Atlantic surface circulation

Gulf Stream volume and heat transports

Talley, 1999 Schmitz, 1996 Larsen, 1992

Location of core sites in Florida Straits

Core retrieval and sampling

Benthic foraminiferal $\delta^{18}O$ and density

increasing S and decreasing T causes sea water density AND foraminiferal δ¹⁸O to increase

after Lynch-Stieglitz et al., 1999

Foraminiferal density estimates match modern observations

Lund et al., 2006

Estimating Gulf Stream transport

Modern techniques

- current meters ~ 29-31 Sv Pillsbury, 1890; Schott et al., 1988; Leaman et al., 1995
- submarine cable estimates of 29 Sv (Jan) to 33 Sv (July)

Wertheim, 1954; Baringer and Larsen, 2001

- geostrophic estimates ~ 28-30 Sv Montgomery, 1941; Schmitz and Richardson, 1968

Geostrophic estimation (using thermal wind equations)

$\frac{\partial \mathbf{v}}{\partial \mathbf{z}} = \mathbf{-}$	$\frac{g}{\rho_o f}$	$\frac{\partial \rho}{\partial \mathbf{x}}$
$\frac{\partial \mathbf{u}}{\partial \mathbf{z}} =$	$\frac{g}{\rho_o f}$	$\frac{\partial \rho}{\partial y}$

- ---> vertical current shear is proportional to horizontal density gradient
- * transport can be calculated only if velocity at a given depth is known

Dry Tortugas δ^{18} O

Bahamas $\delta^{18}O$

Florida Current density cross-sections

Lower Gulf Stream transport during Little Ice Age

Dry Tortugas reflects tropical Atlantic salinity

Levitus, 1994

North Atlantic surface salinity controlled by evaporation-precipitation rate

daSilva et al., 1994

Calculating surface salinity using planktonic foraminifera

Dry Tortugas $\delta^{18}O_{calcite}$ increased during LIA

Dry Tortugas sea surface temperature increased during LIA

Dry Tortugas $\delta^{18}O_{\rm w}$ increased during LIA

Dry Tortugas $\delta^{18}O_w$ record is replicable

The magnitude of $\delta^{18}O_w$ variability is due to either:

A) influence of thermocline water

or B) incorrect Mg/Ca calibration

Schmidt, 1999 Craig & Gordon, 1965

based on multivariate equations of deMenocal et al., 2007

Higher LIA salinity driven by southward ITCZ migration

daSilva et al., 1994

Coherent change in northern Venezuela precipitation

Haug et al., 2001

Gulf Stream characterized by low transport and high surface salinity during the Little Ice Age

A function of reduced windstress curl?

Johns et al., 2002

Model results suggest curl increases when ITCZ migrates southward

A role for the MOC?

HadCM3 surface temp. (°C) anomalies

HadCM3 precipitation (cm/yr) anomalies

Vellinga and Wu, 2004

Conclusions

- Gulf Stream transport varied by ~10% during the last millennium, but was 3±1 Sv lower during Little Ice Age
- Surface Gulf Stream salinity increased during the LIA, most likely due to southward ITCZ migration
- Simultaneous transport and salinity variability implies tight linkage between oceanic circulation and hydrologic cycle on centennial time scales
- Southward migration of wind-field would likely enhance flow, implying MOC was primary driver of LIA transport anomaly

Holocene variability in Gulf Stream transport

Transport increased ~ 4 Sv during Holocene

Lynch-Steiglitz, et al., in press

ITCZ migrated southward during Holocene

Haug et al., 2001

Dry Tortugas $\delta^{18}O_{water}$ record mimics $\Delta^{14}C_{atm}$

North Atlantic region cooled by $\sim 1^{\circ}$ C during LIA

