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Carbon dioxide

Temperature (°C)

lce core records show tight coupling
between CO, and climate
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Wind-driven upwelling south of the Zero in
Wind Stress Curl “ventilates” deep waters
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Upwelling ventilates CO,-rich deep water masses S of the APF
Figure of K Speer redrawn by T Trull



Ventilation and CO, exchange controlled by
position of the SH Westerlies?

Australia

o]

60°S Antarctica

Northward shift of winds reduced ventilation during glacials.
Evidence for wind shift from precipitation proxy records.

Toggweiler, 2006



Evidence for increased upwelling during

deglaciations?
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Principle: Upwelling brings nutrients (N, P,
Si) to the surface as well as CO,
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Maximum nutrient supply is between the APF and the SACCF
Figure of K Speer redrawn by T Trull



Principle: Between APF and SACCF Si is
consumed by diatoms almost completely
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Although N and P go largely unused, nearly all Si is consumed
Figure from US JGOFS/AESOPS



Principle: Between APF and SACCF Si is
consumed by diatoms almost completely

Nitrate (umol kg™") Si(OH), (umol kg™)

Although N and P go largely unused, nearly all Si is consumed.
This is true throughout the Southern Ocean.

Figure from Sarmiento et al., 2004



Review: Features of the region between
the APF and SACCF

 Maximum upwelling and nutrient supply
* Nearly all Si used by diatoms

* Annual opal production is limited by Si
l.e., by upwelling




Implication for the region between the APF
and SACCF

Production of opal by diatoms in this
region can exceed today’'s maximum
values only by increasing the supply of

dissolved Si...

...1.e. By increasing the rate of upwelling



Sites where deglacial maxima in opal burial
have been observed

Feature occurs:
 South of the APF
* |n all sectors

* Results from
selected sites




Deglacial maxima in opal burial in 3 sectors
of the Southern Ocean
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Maximum So. Ocean upwelling coincided
with deglacial rise in CO,
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SUMMARY OF EVIDENCE:

Peak upwelling (opal flux)
coincided with:

« warming in Antarctica,

» deglacial rise in CO,

« deglacial drop in atm. A14C

Including pause during ACR



Atm CO, increased during NH cold intervals
surrounding earlier HEs
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High resolution CO, record from Byrd ice core (red CO,)
extended through last glacial period (Ahn and Brook, 2008)



TNO57-14: Opal flux upwelling proxy
through last glacial period

Sediment focusing
changed with climate.

TNO57-13 has an
expanded deglacial
section.

TNO57-14 has an
expanded section
during the last glacial
period.




Upwelling proxy correlates with pCO,
throughout last glacial period
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Upwelling Summary

Deglacial Si supply to surface waters south of the APF
exceeded supply before or after; increased upwelling is the
only plausible cause. Upwelling correlated with rising
atmospheric CO,. Coincided with HS1 and the YD.

Increased upwelling (opal burial) coincided with earlier
periods of rising atmospheric CO.,.

Wind-driven upwelling in the Southern Ocean is
a primary mechanism driving changes in
atmospheric CO,.



Proposed Trigger

Heinrich Stadials (and Younger Dryas)
« Extreme cold in N. Hemisphere

* N. Hemisphere iceberg discharge

* Increased sea ice covered N. Atlantic

* Reorganization of wind systems



Teleconnection via winds
(global atmospheric circulation)

* Change in N. Hemisphere Westerlies during HE1
and YD recorded in Lake Lahontan level (Benson,
1995) and during YD recorded in German Lake
sediments (Brauer et al., 2008)

« Southward shift of ITCZ and reorganization of
monsoons during HEs (many references)

« Southward shift of S. Hemisphere westerlies:
Shift in S Atlantic STF (Barker et al., 2009)
Increased Precip in New Zealand (Whittaker, 2008)
SST records off S. Chile (Lamy et al., 2007)
Coupled GCMs (Timmermann et al., 2007)



‘. Rapid shiftin S Atlantic STF
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Rapid drops in polar

foram species at 41°S
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and HS2 attributed to
wind forcing and
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1
o

(=]

P
(=]

(94) se0eds a0

w
(=]

'y
[=]

(%]
[=]

ma
—
381

(i-1ow o) B0/ By
L 1
®

(Barker et al., 2009)




8"0 vs. VSMOW (%)
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Increased precip over
South Island of New
Zealand during HEs

G

Reduction of 8180 in
speleothem CaCO,
attributed to increased
precipitation during
Heinrich Events.

(Whittaker, 2008)



Increased precip over S. Island of New
Zealand linked to intensity of westerlies
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INncreases in response

Wind stress at 60°S

to waterhosing (~HESs)
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Increased wind stress at 60°S drives
upwelling in the So. Ocean

Australia

o]

60°5 Antarctica

Maximum wind stress at the latitude of the Drake Passage
favors upwelling of deep CO,-rich water masses.

Toggweiler, 2006



Abrupt Changes in Winds and CO,

Extreme N Hemisphere cold events (HEs)
induced reorganization of global atmospheric
circulation.

Southward shift of SH Westerlies during HEs
forced increased upwelling in the Southern
Ocean and release of CO, from deep waters.

Asymmetry of polar temperature changes
caused the southward shift of SH Westerlies to
be more extreme during HEs than during the
Holocene or warm interstadials.



Are these relationships limited to “glacial”

conditions?
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Earliest abrupt change of last climate cycle:
Greenland Stadial 26 @ ~ 118 ka
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Earliest abrupt change of last climate cycle:
GS 26 has widespread footprint

= Atlantic SST: Although age models
2 Subpolar , :
Subtropical differ slightly, many
records show abrupt
Speleothems: changes at ~118ka
China consistent with cooling
Israel in the N Atlantic.
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Earliest abrupt change of last climate cycle:
GS 26 has widespread footprint
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Earliest abrupt change of last climate cycle:
GS 26 has features of Heinrich Stadials
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Earliest abrupt change of last climate cycle:
GS 26 has widespread footprint

= Atlantic SST: Although age models
2 Subpolar , :
Subtropical differ slightly, many
records show abrupt
Speleothems: changes at ~118ka
China consistent with cooling
Israel in the N Atlantic.
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Earliest abrupt change of last climate cycle:
GS 26 has widespread footprint

Austrian Alps
speleothem:

SST (°C)

Abrupt drop in '80 at
118ka attributed to
Increased seasonality.

Colder winters.
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Conclusions: Abrupt NH Coolings...

Triggered by (freshwater-induced) expansion of
N Atlantic sea ice.

Transmitted globally by winds.

Raise atm CO, by upwelling in So. Ocean.
Terminations are a special case.
Sequence may have occurred as early as 118 ka.

Terminating last interglacial.
With small NH ice sheets.



Recommendations: Future work...

Test systematic pattern of N Atlantic sea ice trigger
and global wind teleconnection during Abrupt
Change events.

Discriminate between consequences of winds
versus AMOC.

Investigate other factors affecting global winds
and their impact on CO,, and climate.



